Problem 1. (18 pt) The first column of each row in the Table below defines a new random variable $X$.
(a) Indicate the type of the random variable $X$. (There are three possible types: discrete, continuous, or mixed.) Put your answers in the second column.
(b) Find $P[1<X \leq 2]$. Put your answers in the third column. Your anewers should be of the form 0._ _ . .


For this question, you do not need to provide the reason or show your calculation. However, you may use the space below or the last page of the exam $x \sim \varepsilon(3)^{\lambda \lambda} \quad f_{x}(x)= \begin{cases}3 e^{-3 x}, & x>0, \\ 0, & \text { otherwise. }\end{cases}$

$$
\begin{gathered}
P[1<x \leqslant 2]=\int_{1}^{2} 3 e^{-3 x} d x=\left.3 \frac{e^{-3 x}}{-1}\right|_{1} ^{2}=-e^{-6}-\left(-e^{-3}\right) \\
=e^{-3}-e^{-6} \approx 0.0473 \\
x \sim \mathcal{N}(1,3)<\sigma_{x}^{2} \quad P[1<x \leq 2]=F_{x}(2)-F_{x}(1)=\Phi(\underbrace{\frac{2-1}{\sqrt{3}}}_{0.2-1})-\Phi\left(\frac{1-1}{\sqrt{3}}\right) \\
F_{x}(x)=\Phi\left(\frac{x-m}{\sigma}\right)=0.7190-0.5=0.2190
\end{gathered}
$$

Problem 2. ( 6 pt ) Let $X \sim \operatorname{Binomial}(36,1 / 216)$. (For example, roll three dice 36 times and let $X$ be the number of times a triple 6 appears.)
(a) (3 pt) Find $P[X>0]$.
(b) (3 pt) Use Poisson approximation to find $P[X>0]$.

Problem 3. (12 pt) A random variable $X$ has probability density function

$$
f_{X}(x)= \begin{cases}\frac{x}{4}, & 1<x<3 \\ 0, & \text { otherwise }\end{cases}
$$

(a) $(3 \mathrm{pt})$ Find and carefully sketch $F_{X}(x)$.

$$
F_{x}(x)=\int_{-\infty}^{\infty} f_{x}(n) d n=\left\{\begin{array}{l}
0, \\
1,
\end{array}\right.
$$

For $\quad 1<x<3$

$$
F_{x}(n)=\int_{1}^{x} \frac{\mu}{4} d \mu=\left.\frac{\mu^{2}}{8}\right|_{1} ^{x}
$$

$$
F_{x}(x)=\left\{\begin{array}{ll}
0, & x<1 \\
\left(x^{2}-1\right) / 8, & 1 \leqslant x \leq 3 \\
1, & x>3 \\
\text { (b) } & x \text { nt) }
\end{array}=\frac{x^{2}}{8}-\frac{1}{8} .\right.
$$

$$
\text { (1, (b) (3 pt) Let } Y=\frac{x}{4} \text {. Find and carefully sketch the pdf of } Y \text {. }
$$

$$
Y=a X+b \quad a=\frac{1}{4} \quad b=\rho
$$

$$
f_{Y}(y)=\frac{1}{|a|} f_{X}\left(\frac{y-b}{a}\right)=4 f_{X}(4 y)=4 \times \begin{cases}4 y / 4, & 1<4 y<3 \\ 0, & \text { oturwise }\end{cases}
$$

$$
= \begin{cases}4 y, & \frac{1}{4}<y<\frac{3}{4} \\ 0, & \text { otherwise } . \\ & \end{cases}
$$



$$
\begin{aligned}
& p[V=5 \cdot v]=p\left[g(x)=\begin{array}{c}
5 \\
v
\end{array}\right]=\sum_{x} \underbrace{p[x=x]}_{0}=0 \\
& \text { countable } \underset{\text { those are } a t)}{\text { move } x} \quad g(x)=v
\end{aligned}
$$

ES 315 EXAM 2 - Name that satisfies $v=g(x)$ ID
(c) $(5 \mathrm{pt})$ Let $V=\frac{1}{X}=g(x) \quad g(x)=\frac{1}{x}$
(i) $(2 \mathrm{pt})$ Find $\mathbb{E} V$.

$$
\mathbb{E} V=\mathbb{E}[g(x)]=\int_{-\infty}^{\infty} g(x) f_{x}(x) d x=\int_{1}^{3} \frac{1}{x} \frac{x}{4} d x=\frac{1}{4} \times 2=\frac{1}{2}
$$

(ii) $\left(1 \mathrm{pt}^{*}\right)$ Find the pdf of $V$.

Because $x \in(1,3)$, we know that $V=\frac{1}{x} \in\left(\frac{1}{3}, 1\right) \Rightarrow F_{v}(v)= \begin{cases}0, & v<\frac{1}{3}, \\ \frac{1}{8}\left(a-\frac{1}{v} 2\right), & \frac{1}{3} \leqslant v \leqslant 1, \\ 1, & v>1\end{cases}$ when $v \in\left[\frac{1}{3}, 1\right]$,

$$
\begin{aligned}
F_{v}(v) & =p\left[v \leqslant v^{\frac{2}{3}}\right]=p\left[\frac{1}{x} \leqslant v^{\frac{2}{3}}\right]=p\left[x \geqslant \frac{1}{v}\right] \\
& =\int_{1 / v}^{\infty} f_{x}(x) d x=\int_{q / v}^{3} \frac{x}{4} d x=\frac{1}{8}\left(9-\frac{1}{v^{2}}\right)-
\end{aligned}
$$


(iii) (2 pt) Find the pdf of $V$.

$$
\begin{aligned}
& \text { (iii) (2 pt) Find the pdf of } V . \\
& f_{v}(v)=\frac{d}{d v} F_{v}(v)=\left\{\begin{array}{ll}
0, & v \leqslant \frac{1}{3}, \\
\frac{1}{8}\left(\frac{L}{v^{3}}\right), & \frac{1}{3}<v<1, \\
0, & v \geqslant 1,
\end{array}=\left\{\begin{array}{cc}
\frac{1}{3}, & \frac{1}{3}<v<1 \\
0, & \text { otherwise. }
\end{array}\right.\right.
\end{aligned}
$$

$v$ is a cont. RV
$\Downarrow$
$f_{v}(v)$ @ $v=\frac{1}{3}, 1$ con be any real numbers $\Rightarrow$ we set then to be 0 .
(d) $\left(1 \mathrm{pt}^{* * *}\right)$ Let $Z=X^{X}$. Find $f_{Z}(4)$.
ELS 315 EXAM $2-$ Name $\quad$ ID

Problem 4. (23 pt) The random variable $X$ has mf

$$
p_{X}(x)= \begin{cases}\frac{c}{x}, & x=1,2 \\ 0, & \text { otherwise } .\end{cases}
$$

(a) $(2 \mathrm{pt})$ Check that the constant $c$ must be $\frac{2}{3}$ and that $\mathbb{E} X=\frac{4}{3}$.

$$
\begin{aligned}
\sum_{x} p_{x}(x)=1 \Rightarrow \frac{c}{1}+\frac{c}{2} & =1 \\
\frac{3}{2} c & =1 \\
c & =\frac{2}{3}
\end{aligned} \quad \mathbb{E x}=\sum_{x} x p_{x}(x)
$$

(b) (11 pt) Let $V=\frac{1}{X}$.
(i) $(3 \mathrm{pt})$ Find the emf of $V$.

$$
\begin{array}{l|l|l}
x & P_{X}(x) & v=1 / x \\
\hline 1 & 2 / 3 & 1 / 1=1 \\
2 & 1 / 3 & 1 / 2
\end{array} \quad \quad P_{V}(v)= \begin{cases}2 / 3, & v=1, \\
1 / 3, & v=1 / 2, \\
0, & \text { otherwise. }\end{cases}
$$

(ii) $(8 \mathrm{pt})$ Find the following quantities:
i. $(3 \mathrm{pt}) \mathbb{E}[V]$
ii. $(3 \mathrm{pt}) \mathbb{E}\left[V^{2}\right]$
iii. $(2 \mathrm{pt}) \operatorname{Var} V$
(c) (10 pt) Now, consider another random variable $Y$. The pmf of $Y$ is not known. However, suppose we know that

$$
\mathbb{E} Y=2, \quad \operatorname{Var} Y=1, \quad \text { and } X \Perp Y
$$

(i) $\left(1 \mathrm{pt}^{*}\right)$ Your friend, who seems to know the pmf of $Y$, calculate $P[|Y-2| \geq 2]$ and get $\frac{1}{3}$. Explain how this result is impossible.
(ii) (2 pt) Are $X$ and $Y$ uncorrelated?
(iii) (7 pt) Find the following quantities:
i. $(2 \mathrm{pt}) \operatorname{Cov}[X, Y]$
ii. (1 pt) $\operatorname{Cov}[3 X+5,4 Y]$
iii. $(2 \mathrm{pt}) \mathbb{E}[X Y]$
iv. (1 pt) $\mathbb{E}\left[\frac{Y}{X}\right]$
v. $\left(1^{*} \mathrm{pt}\right) \operatorname{Var}\left[\frac{Y}{X}\right]$

Problem 5. (21 pt) Random variables $X$ and $Y$ have the following joint mf

$$
p_{X, Y}(x, y)= \begin{cases}c(x+y), & x \in\{1,3\} \text { and } y \in\{1,3\} \\ 0, & \text { otherwise }\end{cases}
$$

(a) (4 pt) Check that $c=\frac{1}{16}$ and then find the joint mf matrix $P_{X, Y}$.

Note that there are only four possible pairs $(x, y)$ which have nonzero probabilities.
$\sum_{x, y} P_{x, y}(a, y)=1$
$2 c+4 c+4 c+6 c=1 \Rightarrow 16 c=1 \Rightarrow c=\frac{1}{16}$

(b) (4 pt) Find the $\operatorname{pmf} p_{X}(x)$ and the $\operatorname{pmf} p_{Y}(y)$.
$6 \mathrm{C} \quad 10 \mathrm{C}$

$$
\begin{gathered}
=\frac{3}{8}=\frac{5}{8} \\
P_{x}(a)= \begin{cases}3 / 8, & x=1, \\
5 / 8, & x=3, \\
0, & \text { otherwise. }\end{cases}
\end{gathered}
$$

$P_{Y}(y)= \begin{cases}3 / 8, & y=1, \\ 5 / 8, & y=3 \\ 0, & \text { otherwise. }\end{cases}$
(c) (1 pt) Are $X$ and $Y$ identically distributed?

Yes

$$
P_{X}(c)=r_{Y}(c) \quad \forall c \text {. }
$$

(d) (3 pt) Find $\mathbb{C} X$ and $\mathbb{E} Y$.

$$
E X=I E Y=\sum_{a} x p_{X}(a)=1 \times \frac{3}{8}+3 \times \frac{5}{8}=\frac{18}{8}=\frac{9}{4}
$$

(e) $(3 \mathrm{pt})$ Find $\mathbb{E}[X Y]$.

$$
\begin{aligned}
& \text { 2-7 } \\
& c=\frac{1}{16} \cong 5
\end{aligned}
$$

(f) (2 pt) Are $X$ and $Y$ uncorrelated? $\mathbb{E}[X Y] \neq \mathbb{E}[X] \mathbb{E}[Y]$

No.
$5 \quad \frac{9}{4} \times \frac{9}{4}$
(g) (2 pt) Are $X$ and $Y$ independent?

$$
P_{X, Y}(1,1)=\frac{2}{16}=\frac{1}{8}
$$

No, (independent implies "uncorrelated"
"Not uncorrelated" implies "Not independent")
(h) (2 pt) Find $\operatorname{Var}[X+Y]$.
$P_{X}(1)=\frac{3}{8} \quad P_{Y}(1)=\frac{3}{8}$

$$
\operatorname{Var}[X+Y]=\operatorname{Var} X+\operatorname{Var} Y+2 \underbrace{\operatorname{Cov}[X, Y]}_{\mathbb{E}[X Y]}
$$

Problem 6. (8 pt) Random variables $X$ and $Y$ have joint pdf

$$
f_{X, Y}(x, y)= \begin{cases}c, & 0 \leq y \leq x \leq 2 \\ 0, & \text { otherwise }\end{cases}
$$

(a) (4 pt) In the picture below, specify the region of nonzero pdf. Then, find the value of $c$.

ECS 315 EXAM $2-$ Name $\quad$ ID
(b) (4 pt) Find $\mathbb{E} X$.

Probiem 7. (6 pt)
(a) (2 pt) Consider an exponential random variable $X \sim \mathcal{E}(3)$. Find the characteristic function $\varphi_{X}(v)$ f $X$.
(b) (4 pt) Suppose $Y=X_{1}+X_{2}+X_{3}+X_{4}$ where $X_{1}, X_{2}, X_{3}$, and $X_{4}$ are i.i.d. $\mathcal{E}(3)$.
(i) $(2 \mathrm{pt})$ Find the characteristic function $\varphi_{Y}(v)$ of $Y$.
(ii) (2 pt) Use $\varphi_{Y}(v)$ to find $\mathbb{E} Y$.

Problem 8. ( 6 pt ) For the following parts, there will be no partial credit. Put only your final answers on this page. No explanation is required. You may use the space provided on the next page for you calculation.
(a) ( $\left.1 \mathrm{pt}+1 \mathrm{pt}^{*}\right)$ Consider a function

$$
g(x)= \begin{cases}0, & 0<x<\frac{4}{9} \\ 1, & \frac{4}{9} \leq x<\frac{8}{9} \\ 2, & \text { otherwise }\end{cases}
$$

Suppose $Y=g(X)$, where $X \sim \mathcal{U}(0,1)$. Which family of random variables does $Y$ belong? What are its parameters?
(b) $\left(2 \mathrm{pt}^{*}\right)$ Let $X \sim \operatorname{Binomial}(4800,1 / 4)$. Recall that we can view a Binomial random variable as a sum of i.i.d. Bernoulli random variables. Therefore, we can closely approximate the probability $P[1188<X \leq 1212]$ by $2 \Phi(z)-1$ where $\Phi$ is the standard normal cdf.
Find $z$ and the corresponding $2 \Phi(z)-1$.
(c) ( $1 \mathrm{pt}^{* *}$ ) Suppose $X$ and $Y$ are bivariate Gaussian random variables with

$$
\mathbb{E} X=2, \mathbb{E} Y=3, \sigma_{X}=2, \sigma_{Y}=1, \rho_{X, Y}=\frac{1}{2}
$$

Find the values of the constants $a$ and $b$ which minimize

$$
\mathbb{E}\left[(X-(a Y+b))^{2}\right]
$$

(d) (1 pt) Do not forget to submit your formula sheet with your exam.

Problem 9. Extra Credit (1 pt): What is the room number of Dr.Prapun's office? Hint: BKD3_ _ _ - .
ECS 315 EXAM $2-$ Name $\quad$ ID

This page is intentionally left blank. Use it for your calculation.

